
1.
2.
3.
4.
5.

1.
2.
3.

Properties Encryption
Business Value to Client

By default, OpenLegacy projects contain various passwords,
credentials, and tokens required to connect to backend systems,
databases or other system components. To avoid sensitive data
leakage, we should avoid saving it as clear-text across projects and
ecosystems.

Potentially Impacted Components in the Product

OpenLegacy Projects of all types: SDK, API and
Microservices
OpenLegacy Microservices Ecosystem (especially
OpenLegacy Config Server)
OpenLegacy IDE (Project Creation Wizards)
OpenLegacy MMC

Prerequisites

Properties Encryption functionality relies on .Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files

For version lower than this extension must be installed to enable Properties Encryption feature.JDK 1.8.0_u161,

For and higher, please refer to the following documentation OpenJDK8u151 https://github.com/open-eid/cdoc4j/wiki/Enabling-Unlimited-Strength-
.Jurisdiction-Policy

Starting with version , files are included in the distribution. Therefore, no additional actions are required if you are usingJDK 1.8.0_u161 JCE JDK
newer versions of the JDK.

The OpenLegacy Installation comes with out of the box, and the Properties Encryption feature is enabled by default.jdk1.8.0_u201

Properties Encryption Feature

The ultimate goal of this feature is to enable the encryption of sensitive data stored in the application properties files. Once encrypted, it should
appear in the property file as ciphertext. Original data cannot be recovered without having an encryption key. This feature prevents malicious use
of this data, should project source code is leaked or passwords are exposed in another way.

Given that is provided and Encryption feature is not disabled by setting , theJCE Unlimited Strength Policy encrypt.disabled=true
following stages would take place during OpenLegacy application creation and startup:

Design-time

If contains password fields, the mechanism of is engagedOpenLegacy Project Creation Wizard Encryptor Creation
Properties Encryption Service loads in several locations ()Encryption Properties Encryption Properties Loader Stage 1
Encryptor is created based on loaded in the previous stageEncryption Properties
Clear-text password is converted to Ciphertext using the which was created previously.Encryptor
Passwords in ciphertext is saved to project's configuration files.*.yml

Once the project is created, you can add additional properties. If you want to encrypt any sensitive properties you should do it manually by using
Spring CLI.

Run-time

Properties Encryption Service loads in several locations ()Encryption Properties Encryption Properties Loader Stage 2
Encryptor is created based on loaded in previous stageEncryption Properties
Ciphertext properties are converted to clear-text using the which was created previously and saved in application memory.Encryptor

Text Encryptor mentioned before is an implementation of spring interface org.springframework.security.crypto.encrypt.TextEncry
 which uses the encryption algorithm by default.ptor AES/CBC

Note: If Unlimited Strength Policy is not provided on the host , Properties Encryption feature will be and sensitive data willJDK disabled
be saved as clear-text.

Note: Encrypted properties have a strict format in which they should appear in the YAML file. A key should be followed by a string value
surrounded by single-quotes and starting with "{cipher}" prefix (without quotes).
For example:
password: '{cipher}bd046712b4144506742ed2815272f875b48705659bac4ce1c7b72fdd739e937a'

https://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
https://github.com/open-eid/cdoc4j/wiki/Enabling-Unlimited-Strength-Jurisdiction-Policy
https://github.com/open-eid/cdoc4j/wiki/Enabling-Unlimited-Strength-Jurisdiction-Policy

1.

2.
3.

Configuration

To enable/disable or configure Properties Encryption behavior, you can utilize the following properties:

Property Default
Value

Type Description Environment Variable

encrypt.disabled false Boolean Property used to disable encryption OL_DISABLE_ENCRYPTION

encrypt.key changeme String A symmetric encryption key. Consider using a keystore as a
stronger alternative.

OL_ENCRYPTION_KEY

encrypt.salt deadbeef String

(HEX)

Salt for the random secret used to encrypt ciphertext. Once it
is set, do not change it (or existing ciphers will not be
decryptable).

OL_ENCRYPTION_SALT

encrypt.fail-on-error true Boolean Flag raised if a process fails due to an encryption or
decryption error.

OL_ENCRYPTION_FAIL_ON_ERROR

encrypt.key-store.location null String Location of the keystore file, e.g. ,classpath:keystore.jks
file:C:/Users/Admin/keystore.jks (Internally loaded as org.spri

.Resource using ngframework.core.io org.springframework.co
.DefaultResourceLoader)re.io

OL_KEYSTORE_LOCATION

encrypt.key-store.password null String Password that locks the keystore. OL_KEYSTORE_PASSWORD

encrypt.key-store.alias null String Alias for a key in the store. OL_KEYSTORE_ALIAS

encrypt.key-store.secret null String Secret protecting the key (defaults to the same as the
password).

OL_KEYSTORE_SECRET

encrypt.rsa.algorithm DEFAULT Enum The RSA algorithm to use (DEFAULT or OEAP). Once it is
set, do not change it (or existing ciphers will not be
decryptable).

OL_ENCRYPTION_RSA_ALGORITHM

encrypt.rsa.strong false Boolean Flag to indicate that "strong" AES encryption should be used
internally. If true, the GCM algorithm is applied to the AES
encrypted bytes. Default is false (in which case, "standard"
CBC is used). Once it is set, do not change it (or existing
ciphers will not be decryptable).

OL_ENCRYPTION_RSA_STRONG

encrypt.rsa.salt deadbeef String
(HEX)

Salt for the random secret used to encrypt cipher text. Once
it is set, do not change it (or existing ciphers will not be
decryptable).

OL_ENCRYPTION_RSA_SALT

These properties can be defined in one of the following locations:

Spring environment - via program arguments or properties file. for regular project and for microservicesapplication.yml bootstrap.yml
project.
System environment - via Environment Variable
User environment - via '[HOME_DIRECTORY]/.openlegacy/encryption-config.yml' file

If there are no properties in these locations, default properties are applied

Encryption Properties Loading Priority

The following priority is applied if encryption properties are defined in multiple sources (from higher to lower):

While it is possible to define encryption properties in application configuration files (application.yml, bootstrap.yml), it is highly
recommended not to use this option except in testing.

http://classpath/keystore.jks
http://org.springframework.core.io
http://org.springframework.core.io
http://org.springframework.core.io
http://org.springframework.core.io

Encryption Property Source Design-time* Run-time Microservices Config Server

Spring Environment There is no way to
initialize Spring

environment before
project is created

application.yml

or

command-line argument

bootstrap.yml

or

command-line argument

bootstrap.yml

or

command-line argument

System Environment (Env. Variable)

User Environment

Default

 - in this context refers to Project Creation stage (Project Creation Wizards) * Design-time

Microservice Ecosystem and MMC

Passwords and tokens in ecosystem projects and MMC are encrypted with the default key () Currently, there is no way tochangeme .
automatically encrypt sensitive data upon ecosystem import, as ecosystem projects and MMC are imported from zip files and are not generated
by Freemarker.

If you are going to use a different encryption key, you will have to replace all the ciphers manually.

Config Server

Spring Config Server supports Properties Encryption out of the box. The OpenLegacy Properties Encryption module is responsible for creation of
the TextEncryptor.

Additionally, the OpenLegacy Config Server provides proprietary functionality to encrypt sensitive data upon saving or updating configuration files.

You can manage a list of default property-keys to encrypt by providing the following property n the YAML file:

Property Default Value Type Description

ol.environment.keys-to-sanitize List Keys defined by this property will be encrypted before persisting to database or git

Manual Encryption

Property encryption and re-encryption during all stages of development cannot be fully automated. Once an OpenLegacy project is created, a

1.

2.

3.

user must encrypt additional properties and re-encrypt properties if an encryption key is changed.

For this purpose should be used, coupled with the Spring Cloud extension.Spring CLI

Common Pitfalls

Once an encryption key is configured, don’t change it unless you change all the ciphers as well. This will lead to an error during
application startup.
Don’t change any properties except and unless necessary. Be extremely careful when changing properties,encrypt.key encrypt.disabled
as errors in this could have severe consequences on your security.
Upon disabling the Encryption feature, make sure you get rid of all ciphers in configuration properties. Otherwise, the application will fail
on startup.

Relevant Tickets

OL-5762

Implementation Notes, Relevant Docs and Examples

Note: the Spring CLI version and Spring Boot version used by OpenLegacy must match. As of writing this article, the current
OpenLegacy Spring Boot version was 1.5.19.RELEASE.

https://docs.spring.io/spring-boot/docs/1.5.19.RELEASE/reference/html/getting-started-installing-spring-boot.html#getting-started-installing-the-cli
https://openlegacy.atlassian.net/browse/OL-5762

	Properties Encryption

